Matrix Measures and Random Walks with a Block Tridiagonal Transition Matrix

نویسندگان

  • Holger Dette
  • Bettina Reuther
  • W. J. Studden
  • Marcin J. Zygmunt
چکیده

In this paper we study the connection between matrix measures and random walks with a block tridiagonal transition matrix. We derive sufficient conditions such that the blocks of the n-step block tridiagonal transition matrix of the Markov chain can be represented as integrals with respect to a matrix valued spectral measure. Several stochastic properties of the processes are characterized by means of this matrix measure. In many cases this measure is supported in the interval [−1, 1]. The results are illustrated by several examples including random walks on a grid and the embedded chain of a queuing system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix representation of a sixth order Sturm-Liouville problem and related inverse problem with finite spectrum

‎In this paper‎, ‎we find matrix representation of a class of sixth order Sturm-Liouville problem (SLP) with separated‎, ‎self-adjoint boundary conditions and we show that such SLP have finite spectrum‎. ‎Also for a given matrix eigenvalue problem $HX=lambda VX$‎, ‎where $H$ is a block tridiagonal matrix and $V$ is a block diagonal matrix‎, ‎we find a sixth order boundary value problem of Atkin...

متن کامل

The Class of Inverse M-Matrices Associated to Random Walks

THE CLASS OF INVERSE M-MATRICES ASSOCIATED TO RANDOM WALKS∗ CLAUDE DELLACHERIE† , SERVET MARTINEZ‡ , AND JAIME SAN MARTIN‡ Abstract. Given W = M−1, with M a tridiagonal M -matrix, we show that there are two diagonal matrices D,E and two nonsingular ultrametric matrices U, V such that DWE is the Hadamard product of U and V . If M is symmetric and row diagonally dominant, we can take D = E = I. W...

متن کامل

On the nonnegative inverse eigenvalue problem of traditional matrices

In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

Matrices Which Inversions are Tridiagonal, Band or Block-Tridiagonal and Their Relationship with the Covariance Matrices of a Markov Processes

The article discusses the matrices of the 1 n A , m n A , m N A forms, whose inversions are: tridiagonal matrix 1  n A (n dimension of the matrix), banded matrix m n A  (m the half-width band of the matrix) or block-tridiagonal matrix m N A  (N=n x m – full dimension of the block matrix; m the dimension of the blocks) and their relationships with the covariance matrices of measurements with ...

متن کامل

Determinants of Block Tridiagonal Matrices

A tridiagonal matrix with entries given by square matrices is a block tridiagonal matrix; the matrix is banded if off-diagonal blocks are upper or lower triangular. Such matrices are of great importance in numerical analysis and physics, and to obtain general properties is of great utility. The blocks of the inverse matrix of a block tridiagonal matrix can be factored in terms of two sets of ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2006